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ABSTRACT 

The study evaluates the optimum probabilities of misclassification using the Edgeworth Series 

Distribution (ESD) and compares the misclassification errors of ESD with the Normal 

Distribution (ND) for three populations using simulated data. It equally examined the adequacy 

of distribution performance between ESD and ND techniques and evaluates the performance 

of LDA and QDA in classifying ESD averaged over various sample sizes for three distinct 

populations.  The optimal probabilities of misclassification for the Edgeworth Series 

Distribution (ESD) were computed with specific parameters ( 01  , ,12  13  and 1

with 4 being the skewness factor) within defined intervals (0.00625, 0.4 being in 14 intervals). 

The study also examined the apparent probabilities of misclassification for ESD and ND when 

means ( 1 , 2 and 
3 ) are known or estimated from samples.. The findings of the study also 

revealed that QDA tends to have higher accuracy and AUC-ROC values than LDA across all 

the skewed levels. The study concluded that QDA outperformed LDA in terms of accuracy and 

error rates, demonstrating superior discriminatory power. This study provides valuable insights 

for those working with datasets involving multiple populations and variables, with potential 

applications in various fields such as multivariate methods, data science, machine learning, 

business, healthcare, and finance. The research contributes to the advancement of robust 

classification methods and provides programming code for evaluation, enhancing the 

methodological toolkit in the field. It establishes a foundation for future research endeavours 

and presents a comprehensive framework for comparing LDA and QDA performance in ESD 

data, highlighting the effectiveness of QDA in handling skewed data for multiple populations.  

The research recommended further exploration into developing a generalized model for 

estimating probabilities of misclassification via ESD with flexible distribution assumptions and 

robust estimation methods 

Keywords: Optimal probability, Edgewoth Series, Discrimination, Quadratic,  discriminant analysis 
 

1. INTRODUCTION 

In this work, we investigated the Edgeworth series distribution classification rule/technique 

and normal distribution classification rule/technique with regards to errors of misclassification 

for three populations. Error can be defined as an act or condition of ignorant or imprudent 

deviation from a code of behaviour or an act involving an unintentional deviation from truth or 

accuracy (Venkatesan, 2014). An error is an action which is inaccurate or incorrect. In some 

usages, an error is synonymous with a mistake (Bruno et al., 2015). The etymology derives 

from the Latin term ‘errare’, meaning ‘to stray’. In statistics, ‘error’ refers to the difference 

between the value which has been computed and the correct value (Metsämuuronen, 2022). 

Misclassification occurs when individuals are assigned to a different category than the one they 

should be in.  This can lead to incorrect associations being observed between the assigned 

categories and the outcomes of interest (Fox et al., 2022). Discrimination and classification are 
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multivariate techniques that are based on a multivariate observations (Sharma et al., 2018). The 

aim of discrimination is to describe the differential features of observations that can separate 

the known populations. The aim of classification is to allocate a new observation to formerly 

defined groups (Wang, 2020). In practice, when we want to discriminate the known 

observations, first of all, we need to allocate them. Contrarily, a discriminator will be needed 

to allocate the observation, so the aims of discrimination and classification are regularly over 

lapped (as cited by Wang, 2020). A classification problem occurs when one makes a number 

of measurements on objects (observations) and wishes to classify the observations into one of 

several groups on the basis of the measurements. The objects (observations) cannot be 

identified with a group directly without recourse to the measurements (Awogbemi and 

Onyeagu, 2019). Awogbemi and Onyeagu (2019) studied on errors of misclassification 

associated with Edgeworth series distribution survey on two populations using small sample 

sizes.  But this work majors on large sample sizes from three populations which none of the 

researchers sighted had written on.  Also comparison on LDA and QDA on 

classification//misclassification with regards to Edgeworth series distribution have not been 

done by any researcher in history, hence the justification for this work. 

This study is primarily concerned with evaluating objectively Edgeworth Series Distribution 

and Normal distribution for three populations.  In specific terms, the researcher also seeks: to  

estimate the optimum probabilities of misclassification by ESD and errors of misclassification 

of Edgeworth series distribution (ESD) with Normal Distribution (ND) for three populations 

using simulated data;  to investigate the distribution performance adequacy of ESD and ND 

Techniques; to compare the performance of Linear Discriminant Analysis (LDA) and 

Quadratic Discriminant Analysis (QDA) in classifying Edgeworth series distribution data 

averaged over different sample sizes for three distinct populations. 

2. REVIEW OF RELATED LITERATURE 

2.1.       Empirical Literature 

Gasana et al. (2024) conducted a study on the moments of the likelihood-based discriminant 

function, which led to quadratic discriminant functions. They separately considered 

classification into one of two known multivariate normal populations with: known covariance 

matrix; unknown covariance matrix. The two cases depended on the sample size and an 

unknown squared Mahalanobis distance. Since the exact distributions were complicated to 

obtain, the researchers established moments for the likelihood-based discriminant functions to 

express the basic characteristics of the respective distributions. The study's results could be 

utilized in various applications, such as: Edgeworth expansion, which provided alternative 

approximations of the distribution of misclassification errors. By examining the moments of 

the likelihood-based discriminant function, they contributed to a deeper understanding of the 

underlying distributions and paved the way for further research in discriminant analysis. Been 

well understood previously. 

Mardia (2024) revisited Fisher's pioneering work on discriminant analysis and its significant 

impact on Artificial Intelligence. The study re-examined the famous iris data used in Fisher's 

1936 study, testing the hypothesis of multivariate normality that Fisher had assumed. Mardia 

provided a deeper insight into Fisher's construction of the genetic discriminant, which had not 

been well understood previously. The study also explored how the field of discriminant 

analysis evolved with the computer revolution, highlighting newer methods such as: kernel 

classifiers, classification trees, support vector machines, neural networks and deep learning. 

Mardia noted that while computational power had shifted the emphasis of Multivariate 

Analysis,   
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Ngailo and Chuma (2023) investigated the classification of observations from repeated 

measurements using linear discriminant analysis. This common practice in fields like medicine, 

psychology, and environmental studies involves classifying data collected over time or under 

varying conditions. The researchers used an extended growth curve model to analyze repeated 

measurements and developed an approximation for misclassification probabilities in linear 

discriminant analysis. They derived the approximation for both known and unknown 

covariance matrices using specific statistical relationships. To evaluate the accuracy of their 

results, Ngailo and Chuma conducted a Monte Carlo simulation study. Their work provided a 

valuable contribution to the field by offering a reliable method for approximating 

misclassification probabilities in linear discriminant analysis with repeated measurements." 

Xue et al. (2023) addressed the challenge of classifying high-dimensional functional data, 

where each observation is associated with multiple functional processes. Unlike existing 

methods that handle a single process or a few processes, this work tackled the complex inter-

correlation structures among multiple processes. The researchers proposed a penalized 

classifier that achieves near-perfect classification and discriminant set inclusion consistency. 

This means that the classification-responsible functional predictors include those of the 

underlying optimal classifier. The challenges addressed by Xue et al. included: complex inter-

correlation structures among multiple functional processes, truncation needed for 

approximation in functional data, difference in discriminant sets between infinite-dimensional 

and truncated optimal classifiers. Through simulation studies and real data applications, the 

researchers demonstrated the favourable performance of their proposed method." 

Kanuti and Ngaruye (2022) investigated the misclassification probabilities in linear 

discriminant analysis (LDA) with repeated measurements. They proposed approximations for 

LDA misclassification probabilities when group means follow a bilinear regression structure. 

The researchers: derived a unified location and scale mixture expression for the standard 

normal distribution in LDA; obtained estimated approximations of misclassification 

probabilities for three cases: - Un-weighted case, weighted known covariance matrix and 

weighted unknown covariance matrix. The key findings revealed that larger p (number of 

repeated measurements) was beneficial for classification when the covariance matrix is known 

or in the un-weighted case. Again, when the covariance matrix is unknown, using fewer 

repeated measurements provided more information than using many measurements close to the 

sample size. The researchers validated their approximations through Monte Carlo simulations, 

confirming their accuracy." 

Nikita and Nikitas (2020) conducted a study comparing seven techniques for sex estimation 

using ordinal variables: Binary logistic regression (BLR); Probit regression (PR); Cumulative 

probit regression (CPR); Linear discriminant analysis (LDA); Quadratic discriminant analysis 

(QDA); Artificial neural networks (ANN); and Naïve Bayes classification (NBC). They 

evaluated the performance of these methods using cranial and pelvic traits from the Athens 

Collection, a modern documented skeletal dataset. The researchers implemented an R package 

for cross-validated sex classification and discriminant function analysis. Additionally, they 

proposed a simple algorithm combining two discriminant functions. The results showed: small 

differences in classification performance among the methods; LDA was simpler, more flexible, 

and slightly outperformed BLR, NBC, and PR; combining pelvic and cranial traits via BLR or 

LDA discriminant functions: removed population-specificity, improved prediction accuracy 

above 97%. The study suggested that LDA might be the preferred method for skeletal sex 

estimation due to its simplicity, flexibility, and performance. The combination of traits and 

methods also demonstrated high accuracy and potential for practical applications. 
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Awogbemi and Onyeagu (2019) investigated the errors of misclassification associated with 

Edgeworth Series Distribution (ESD), focusing on the impact of non-normality on 

classification accuracy. They examined the effects of applying a normal classificatory rule to 

persistent non-normal distributions, comparing errors of misclassification between ESD and 

Normal Distribution (ND) across various small sample sizes and skewness levels. The study 

employed numerical inverse interpolation in R to generate uniformly distributed random 

variables and simulated 1000 configurations for each training sample, varying the skewness 

factor (λ3) from 0.00625 to 0.4. The results showed that: as skewness increases, ESD's optimum 

misclassification probability (E12E) decreases, while (E21E) increases; the total probability of 

misclassification remains stable with increasing skewness; ESD's misclassification 

probabilities (E12E and E21E) are consistently higher than ND's (E12N and E21N) across all 

skewness levels. The findings suggested that the normal classification procedure was robust 

against departures from normality, maintaining stable total misclassification probabilities 

despite increasing skewness. The research provided valuable insights into the effects of non-

normality on classification accuracy and the reliability of normal classificatory rules in real-

world applications. 

Kanuti and Ngaruye (2024) conducted a research on asymptotic results for expected probability 

of misclassifications in linear discriminant analysis with repeated measurements. They 

proposed approximations for the misclassification probabilities in linear discriminant analysis 

when the group means had a bilinear regression structure. They checked the accuracies of the 

proposed approximations numerically by conducting a Monte Carlo simulation. The key 

contributions were: they gave a unified location and scale mixture expression of the standard 

normal distribution for the linear discriminant function; they obtained estimated 

approximations of misclassification for the three cases: unweighted case, weighted known 

covariance matrix, and weighted unknown covariance matrix. The findings were: they found 

that larger p (number of repeated measurements) were better classified when the covariance 

matrix was known, also in the unweighted case; they discovered that in the case where the 

covariance matrix was unknown, they gained more information if fewer repeated 

measurements were used compared to when many repeated measurements closer to the number 

of included sample size were used. The research provided valuable insights into the behavior 

of LDA with repeated measurements and offered practical guidelines for improving 

classification accuracy. 

 

3. METHODOLOGY 

3.1.   Theoretical Framework: 

Central Limit Theorem (CLT) 

The central limit theorem says that the sampling distribution of the mean will always be 

normally distributed, as long as the sample size is large enough. Regardless of whether the 

population  has a normal, poison, binomial, or any other distribution, the sampling distribution 

of the mean will be normal. (https://www.scribbr.com, 6 July 2022) 

Normal distribution also known as Gaussian distribution is a probability distribution about the 

mean showing that data near the mean are more frequent in occurrence than data from the 

mean,  The normal distribution appears as a’ bell curved’ when graphed 

ESD and ND are both based on central limit theorem (CLT) which states that under certain 

condition,the sum of many independent random variables regardless of their original 

distribution will tend towards a  normal distribution as the number of variables increases. 

Essentially ESD acts as a way to approximate a distribution using the normal distribution as a 

base incorporating connections based on distribution ‘s moments like skewness and kurtosis 

through a series expansion. 

https://www.scribbr.com/
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Key elements of CLT  are summarized below; 

Population mean;  The average value of the population 

Population standard deviation; The measure of how spread out the population data is. 

Sample mean; The  average value of  a given sample. 

Standard error; The standard deviation of the sampling distribution, decreasing as sample 

size increasing. 

Conditions for CLT to apply includes  that  samples should be  randomly  sampled,  each  

sample should not influence the  other ( Independent sample)   and finally samples  should be 

sufficiently large  enough to be considered adequate. 

Application of CLT enables using normal distribution properties to make inferences about 

population parameters even when the original population distributions unknown. 

It also underpins many statistical tests like hypothesis testing and confidence interval that rely 

on the normal distribution. 

 

3.2 Methods 

Examining the effects of non-normality in a three population discriminatory problem on errors 

of misclassification when Edgworth series distribution defined by Anderson’s statistic (W) is 

used for classifying an observation as emanating from populations π1, π2 and π3.  The effects 

would be studied for varying values of Skewness factor based on the boundary of unimodal 

region for Edgeworth series distribution.  Optimum probabilities of misclassification (OPM) 

by ESD would be computed from known parameter as well as estimating the probabilities of 

misclassification by ESD, where the apparent probabilities of misclassification (APM) in 

respect of ESD for known and estimated parameters are generated.  To generate random 

variables from the ESD, the study used the method of numerical inverse interpolation. Schmidt, 

and Taylor, (1970) described this method in details.  This work would also be analysed using 

RStudio programming package that gave in-depth analysis of the study.   

3.3 Edgeworth Series Distribution (ESD) 

The Edgeworth series distribution is a continuous probability distribution that approximates a 

probability distribution in terms of its cumumulants and Hermite polynomials. It relates the 

probability density function (PDF) to a standard normal distribution PDF. It is sometimes seen 

in statistical asymptotic theory, where approximations to sample statistic distributions of order 

greater than 𝑛−
1

2  are calculated (Adeyeye, 2020). 

The ESD has been used for some practical purposes, including the study of nonlinear gust 

loading factors (used in the design of structures exposed to extreme winds). 

Note that we are treating the effect of non-normality in a three population discrimination 

problem. So, we assume the distributions in the three populations to be univariate Edgworth 

series with different means and the variance are equal. 

Here also, we only consider non-normality due to Skewness, regardless of the fact that some 

authors/writers have written on non-normality which considers both Kurtosis and Skewedness 

in their standard forms. 

Let 𝑥1𝑗 , 𝑥2𝑗  𝑎𝑛𝑑 𝑥3𝑗 denote three independent random samples from three populations, 

𝜋1, 𝜋2 𝑎𝑛𝑑 𝜋3 respectively where (j = 1,2,3, …n1), (𝑗 = 1,2,3 … , 𝑛2) for 𝑥2𝑗 and 𝑗 =

1, 2, 3, … 𝑛3 for 𝑥3𝑗. 

Then the density function of 𝑥𝜄𝑗 
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becomes𝑓(𝑥) = (1 −
ʎ3

Ϭ
𝐷3) ∅

(𝑥−𝜇1)

𝜎
− ∞ < 𝑥 < ∞    (1) 

and that of 𝑥2𝑗 becomes 

𝑓(𝑥) = (1 −
ʎ3

Ϭ
𝐷3) ∅

(𝑥−𝜇2)

𝜎
, −∞ < 𝑥 < ∞     (2) 

and that of 𝑥3𝑗 becomes 

𝑓(𝑥) = (1 −
ʎ3

Ϭ
𝐷3) ∅

(𝑥−𝜇3)

𝜎
, −∞ < 𝑥 < ∞     (3) 

Where ʎ3, 𝜇𝑖(𝑖 = 1, 2, 3)𝑎𝑛𝑑 𝛿 satisfy the conditions, −∞ < ʎ3 < ∞,  and 𝜎 > 0 

Here 𝐷 represents the operator 
𝜕

𝜕𝑥
 𝑎𝑛𝑑 ∅(

𝑥−𝜇1

𝜎
) is the density function 

(3𝜋)−
1

2𝜎−1 exp[
(𝑥−𝜇𝑖)

3𝜎2         (4) 

and ʎ3 is the Skewness factor  

It is equally to note that all terms involving powers of ʎ3 higher than the first are ignored. 

If 𝑥 is a new observation, obtained independently of observation 𝑥1𝑗 , 𝑥2𝑗  𝑎𝑛𝑑 𝑥3𝑗 drawn from 

either population 𝜋1, 𝜋2.or 𝜋3. In other to do this, a classification rule is needed, this implies 

that the discriminant function has to be obtained; so in practice, one could use the univariate 

analogue of the w discriminant function which is defined as; 

𝑤 = 𝐷 (𝑥; 𝑥1, 𝑥2, 𝑥3, 𝜎2) = [𝑥 −
1

3
(𝑥1 + 𝑥2 + 𝑥3)]

(𝑥1− 𝑥2−𝑥3 )

𝛿2   (5) 

When 𝜎2 is known and 

When 𝜎2 is estimated by 𝑆,
2 the pooled sample variance of the observation in population 𝜋1,

𝜋2 and population 𝜋3; 

𝑤 = 𝐷 (𝑥; 𝑥1, 𝑥2, 𝑥3.𝑆
2) = [𝑥 −

1

3
(𝑥1 + 𝑥2  + 𝑥3)]

(𝑥1− 𝑥2− 𝑥3)

𝑆2   (6)  

 

3.4 Optimum Probability of Misclassification of ESD 

The probability of misclassification is said to be optimum, when all parameters of the 

distributions in the populations are known. It is optimal by implication that we cannot improve 

upon it. When an observation from population  𝜋1 is misclassified, its probability of the 

misclassification becomes; 

𝛼1[𝑅, 𝐹] = 𝑃𝑟 [𝑥 ≥ (
𝜇1+𝜇2  +𝜇3

3
)]       (7) 

=  ʃ𝜎
∞ [1 −

ʎ3

6
𝐷3] (

x − 𝜇1

𝜎
)𝑑𝑥 

=  ʃ𝜎
∞ [1 +

ʎ3

Ϭ𝜎3
𝐻3 (

𝑥 − 𝜇1

𝜎
)] (

𝑥 − 𝜇1

𝜎
)𝑑𝑥 

=  ʃ𝜎
∞ (

𝑥−𝜇1

𝜎
) 𝑑𝑥 +

ʎ3

Ϭ𝜎3 ʃ𝜎
∞𝐻3(

𝑥−𝜇1

𝜎
)(

𝑥−𝜇1

𝜎
)𝑑𝑥     (8)  
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where 𝜎 = (
𝜇1+𝜇2  +𝜇3

𝜎
) and 𝐻𝑛(𝑥)𝑖𝑠 Chebyshev’𝑠 Hermite polynomial of degree r and defined 

by the identity: 

Hn(x)  (x) = ( − D)n  (x)        (9) 

(see Kendall and Stuart, 1958) 

If  (x) denotes the standard normal density function, then we define the Hermite Polynomial 

Hn(x) for any integral n by 

(-1)n dn    ʃ−∞
∞ eitx e-t2/2dt = (-1)n dn (x) = Hn(x) (x) 

√2𝜋 dxn                                   dxn    

and putting Z = x – μ1  in (3.47) 

                            σ 

we get 

𝛼1[𝑅, 𝐹] =  ʃ𝜎−𝜇1 
𝜎

∞ (𝑧)𝑑𝑧 +
ʎ3

Ϭ𝜎2
ʃ𝜎−𝜇1 

𝜎

∞ 𝐻3(𝑧) (𝑧)𝑑𝑧 

= 1 −  [(
𝜎− 𝜇1

𝜎
) + 

ʎ3

Ϭ𝜎2 𝐻2[(
𝜎−𝜇1

𝜎
)] (

𝜎−𝜇1

𝜎
)     

= 1 −  [(
𝜇3−𝜇2− 𝜇1

3𝜎
) +  

ʎ3

Ϭ𝜎2 (
𝜇3− 𝜇2−𝜇1

3𝜎
) − 1] (

𝜇3− 𝜇2−𝜇1

3𝜎
)     (10) 

When an observation from population 𝜋2 is misclassificatied, the optimum probability of its 

misclassification becomes 

𝛼2[𝑅, 𝐹] = 𝑃𝑟{𝑥 < (
𝜇1 + 𝜇2   + 𝜇3

3
)} 

=  ʃ−∞
𝜎 [1 −

ʎ3

𝜎
𝐷3] (

𝑥 − 𝜇2

𝜎
)𝑑𝑥 

=  ʃ−∞
𝜎  (

𝑥−𝜇2

𝜎
) +

ʎ3

Ϭ𝜎3 ʃ−∞
𝜎 𝐻3 (

𝑥−𝜇2

𝜎
)(

𝑥−𝜇2

𝜎
)𝑑𝑥     (11)

  

Putting 𝜎 = (
𝜇1+𝜇2 +𝜇3

2
) and z = 

𝑥−𝜇2

𝜎
 

we get 

𝛼2[𝑅, 𝐹] = 𝑃𝑟 ∫ ∅(𝑧)𝑑𝑧 +

𝜎−𝜇2
𝜎

−∞

 
ʎ3

Ϭ𝜎2
∫ 𝐻3(𝑧)(𝑧)𝑑𝑧

𝜎−𝜇2
𝜎

−∞

 

=   [
𝜎 − 𝜇2

𝜎
] −

ʎ3

Ϭ𝜎2
𝐻2 [

𝜎 − 𝜇2

𝜎
][

𝜎 − 𝜇2

𝜎
] 

=   [
𝜇1−𝜇2  −𝜇3

3𝜎
] −

ʎ3

Ϭ𝜎2 [(
𝜇1−𝜇2  −𝜇3

3𝜎
)2 − 1] (

𝜇1−𝜇2 −𝜇3

3𝜎
)    (12) 

When an observation from population 𝜋3 is misclassificatied, the optimum probability of 

misclassification is given by 

𝛼3[𝑅, 𝐹] = 𝑃𝑟{𝑥 ≤ (
𝜇1 + 𝜇2   + 𝜇3

3
)} 
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=  ʃ−∞
𝜎 [1 −

ʎ3

𝜎
𝐷3] (

𝑥−𝜇3

𝜎
)𝑑𝑥       (13) 

=  ʃ−∞
𝜎  (

𝑥−𝜇3

𝜎
) +

ʎ3

Ϭ𝜎3 ʃ−∞
𝜎 𝐻3 (

𝑥−𝜇3

𝜎
)(

𝑥−𝜇3

𝜎
)𝑑𝑥     (14) 

Putting 𝜎 = (
𝜇1+𝜇2 +𝜇3

3
) and z = 

𝑥−𝜇3

𝜎
 in equation 84 

we get 

𝛼3[𝑅, 𝐹] = 𝑃𝑟 ∫ ∅(𝑧)𝑑𝑧 +

𝜎−𝜇3
𝜎

−∞

 
ʎ3

Ϭ𝜎2
∫ 𝐻3(𝑧)(𝑧)𝑑𝑧

𝜎−𝜇3
𝜎

−∞

 

=   [
𝜎 − 𝜇3

𝜎
] −

ʎ3

Ϭ𝜎2
𝐻2 [

𝜎 − 𝜇3

𝜎
][

𝜎 − 𝜇3

𝜎
] 

=   [
𝜇1−𝜇2  −𝜇3

3𝜎
] −

ʎ3

Ϭ𝜎2 [(
𝜇1−𝜇2  −𝜇3

3𝜎
)2 − 1] (

𝜇1−𝜇2 −𝜇3

3𝜎
)    (15) 

The optimum probability of misclassification is of important for comparison purposes and it is 

very useful in this work. 

 
 

3.5.   Model Specifications:  
Model Adequacy for the Difference ESD and ND Techniques 

Wilcoxon rank sum test was employed to examine the relationship of errors of misclassification 

values averaged over small samples between ESD and ND techniques.  

3.6 Wilcoxon Rank Sum Test   

Wilcoxon rank sum test (WRST) was developed by an American statistician, Frank Wilcoxon, 

who worked in the chemical industry in 1945 (Bangdiwala, 2013). The statistic claims that 

given two sets of data say Z and Y from independent continuous distributions, the ranks of the 

𝑍′𝑠 in the combined ordered arrangement of the two sets would generally be larger than the 

ranks of the 𝑌′𝑠 if the median of the Z population exceeds that of the Y population. Following 

the argument, he proposed a test where the location alternative hypothesis, 𝐻1: 𝜃 ≠ 0 is not 

rejected if the sum of ranks of the 𝑍′𝑠 is either too large or too small (Solaro et al., 2021). In 

other words, in the WRST, the values of the data for both samples Z and Y are combined and 

then ranked. If the null hypothesis (H0:  = 0) is true, then there is no difference in the 

population distributions – and the values in each set should be ranked approximately the same. 

Therefore, when the ranks are summed for each set, the sums should be approximately equal, 

and the null hypothesis (H0) will not be rejected. If there is a large difference in the sums of the 

ranks, then the distributions are not identical, and H0 will be rejected. 

For large samples, the normal approximation to the distribution or rejection regions for W can 

be used because of the asymptotic normality of the general linear rank statistic (Beasley et al., 

2009). This approximation is shown to be accurate enough for most practical applications for 

combined sample sizes 𝑁 ≥ 12 (Bellera et al., 2010). The normal distribution approximates 

the Wilcoxon rank sum statistic T as (Harris & Hardin, 2013):     



 5.0


R
Z        (16) 

0.5 in Equation (92) is the continuity correction term required since T is not a continuous 

random variable. When ties are included in the ranking, the mid-rank method is easily applied 
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to handle the problem of ties. The presence of a moderate number of tied observations seems 

to have little effect on the probability distribution (Gibbons, 2003). 

Given H0,  

2

)1( 


Nm
          (17) 

and 

12

)1(2 


Nmn
         (18) 

respectively. R is the sum of ranks for smaller sample size ( n ), m  is the larger of sample 

sizes, .nmN   

A table of critical values corresponding to WRST is contained in any standard text. The table 

gives the rejection regions for level of significance 𝛼, and the sample sizes 𝑚 and 𝑛. Of course, 

if Z is less than or greater than the critical values, the decision is to reject the null hypothesis 

in favour of the alternative. 
 

3.7  Choice of skewness Factor Value 

The choice of the value of the Skewness factor 4 , lay its emphasis on the boundary of the 

unimodal region for Edgeworth series distribution, and this is where the probability density 

function is only cogent. With this reason, the Skewness factor is chosen to be in the range 

(0.00625, 0.4) or (6.25x10-3, 4x10-1)   (Barton, D. E., & Benin, N. (1952)),   Draper, N. R., & 

Tierney, D. E. (1972) 

3.8  Simulated Data from ESD (Generation of Data from ESD) 

The optimum probabilities of misclassification for the Edgeworh Series Distribution (ESD) are 

computed with 01  , 12  , 13  and 1  with 4 being the skewness factor within the 

interval (0.00625, 0.4). 

The apparent probabilities of misclassification for the (ESD) and Normal Distribution (ND) 

were also examined when the means ( 1 , 2 , and 3 ) are known and when the parameters are 

estimated from the samples. Three independent samples of simulation size of 200 each were 

configured at each value of the skewness factor ( 4 ) from three populations ( 21, and 3 ) 

whose distributions are of ESD with the respective parameters: ( 01  , 11  ), 
)1,1( 22   and  ( 13  , 13  ). 

Employing the ESD and ND classification rules, the proportion misclassified in 21, and 3

were obtained and repeated for small samples (n = 4, 8, 12, 16, 20, 24, 28).   

4. RESULTS OF DATA ANALYSIS AND DISCUSSION 

4.1. Results of the Simulation Experiments  

The optimum probabilities of misclassification for the Edgeworh Series Distribution (ESD) are 

computed with 01  , 12  , 13  and 1  with 4 being the skewness factor within the 

interval (0.00625, 0.4).The apparent probabilities of misclassification for the (ESD) and 
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Normal Distribution (ND) were also examined when the means ( 1 , 2 , and 3 ) are known 

and when the parameters are estimated from the samples. Three independent samples of 

simulation size of 200 each were configured at each value of the skewness factor ( 4 ) from 

three populations ( 21, and 3 ) whose distributions are of ESD with the respective 

parameters: ( 01  , 11  ), 
)1,1( 22   and  ( 13  , 13  ). 

Employing the ESD and ND classification rules, the proportion misclassified in 21, and 3

were obtained and repeated for small samples (n = 4, 8, 12, 16, 20, 24, 28). The random 

numbers were generated using RStudio program and simulation results were obtained and 

displayed in Tables 4.1- 4.3 
 

Table 4.1: Optimum Probabilities of Misclassification at Various Skewness Values for ESD 

 Optimum Probabilities of Misclassification 

Skewness Factor ( 4

) 

E1E E2E E3E Total 

31025.6   0.285 0.305 0.270 0.860 

21025.1   0.305 0.320 0.305 0.930 

0.025 0.295 0.310 0.300 0.905 

0.050 0.300 0.280 0.295 0.875 

0.085 0.285 0.295 0.305 0.885 

0.120 0.300 0.285 0.300 0.885 

0.155 0.305 0.300 0.315 0.920 

0.190 0.320 0.315 0.305 0.940 

0.225 0.320 0.305 0.300 0.925 

0.260 0.295 0.295 0.315 0.905 

0.295 0.310 0.295 0.315 0.920 

0.330 0.310 0.280 0.305 0.895 

0.365 0.285 0.275 0.290 0.850 

0.400 0.310 0.305 0.290 0.905 

 Source; IDE, R-Version 4.4.1, R-studio  

The result in Table 4.1 shows the optimum probability of misclassification for each population 

at various skewness levels for Edgeworh Series Distribution. At skewness 0.00625, the 

optimum probabilities of misclassification for populations one, two and three are 0.285, 0.305 

and 0.270 respectively, whereas its sum of optimum probabilities is 0.860. At skewness 

0.01250, the optimum probabilities of misclassification for populations 1, 2 and 3 are 0.305, 

0.320 and 0.305 respectively, whereas its sum of optimum probabilities is 0.930. Also, the 

values of the optimum probabilities of misclassification for populations one, two and three, as 

well as their sum of optimum probabilities for different skewness factors (0.025, 0.050, 0.085, 

0.120, 0.155, 0.190, 0.225, 0.260, 0.295, 0.330, 0.365 and 0.400) are also presented. At lower 

skewness levels (0.00625-0.025), population 2 has the highest probability of misclassification 

(0.305-0.310), followed by Population 1 (0.285-0.295) and Population 3 (0.270-0.300). In 
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general, the optimum probabilities of misclassification vary across populations and skewness 

levels, but their variations are relatively close, indicating similarities in the populations.  

 

Table 4.2: Comparison of Errors of Misclassification of ESD with ND Averaged over 4  

Samples for all Known Parameters with Simulation Size of 200 

 
Skewness  

Factor ( 4 ) 
E1E E2E E3E Total E1N E2N E3N Total 

31025.6   0.30625 0.29875 0.30250 0.90750 0.29125 0.30000 0.29625 0.88750 

21025.1   0.30875 0.30250 0.29000 0.90125 0.29375 0.30375 0.30375 0.90125 

0.025 0.30375 0.30375 0.30375 0.91125 0.30250 0.30500 0.30125 0.90875 

0.050 0.31500 0.29250 0.30125 0.90875 0.28875 0.28875 0.30625 0.88375 

0.085 0.30500 0.30000 0.31375 0.91875 0.29750 0.29625 0.29000 0.88375 

0.120 0.31250 0.29750 0.30750 0.91750 0.30125 0.30375 0.30000 0.90500 

0.155 0.29750 0.28750 0.30750 0.89250 0.30000 0.29875 0.29375 0.89250 

0.190 0.30250 0.29750 0.30125 0.90125 0.30625 0.30000 0.29500 0.90125 

0.225 0.31250 0.30375 0.30125 0.91750 0.30875 0.30000 0.30375 0.91250 

0.260 0.30000 0.28750 0.29500 0.88250 0.30125 0.30000 0.30250 0.90375 

0.295 0.30375 0.29875 0.30000 0.90250 0.30625 0.29625 0.30625 0.90875 

0.330 0.29625 0.31375 0.30625 0.91625 0.29625 0.31375 0.31375 0.92375 

0.365 0.30750 0.31250 0.28750 0.90750 0.30750 0.29875 0.29375 0.90000 

0.400 0.29500 0.30125 0.30500 0.90125 0.30125 0.29125 0.28625 0.87875 

Source: IDE, R-Version 4.4.1, R-studio  

Table 4.2 shows results of the simulation size of 200, which compares the performance of the 

Edgeworth Series Distribution (ESD) and Normal Distribution (ND) methods averaged over 4 

samples for estimating probabilities of misclassification across different populations and 

skewness levels. The probabilities of misclassification vary across populations and skewness 

levels, but their variations are relatively close between the two methods, indicating that both 

methods perform similarly. However, the ESD method tends to have slightly higher 

probabilities of misclassification compared to the ND method, especially for Population 1 at 

skewness levels (6.25×10-3 – 0.12).  

The ESD and ND classification procedures have similar total probability of misclassification 

at all 4 values. The total probability of misclassification values shows that using a small 

sample of 4 to estimate 1 , 2 , and 3 , results is either underestimation or overestimation for 

each value of 4 . The skewness component ( 4 ) has minimal effect on the overall probability 

of misclassification, indicating that it is not affected by deviations from normality. Based on 

these values, the probabilities of misclassification across all populations can be considered 

relatively high, as they exceed 0.2 (20%) and are close to 0.3 (30%) 

 

 



Journal of Economics and Allied Research Vol. 10, Issue 1, pp.282-321 (Mar. 2025) Print ISSN: 2536-7447 and E-ISSN: 3043-6591 

293 | P a g e  
 

Table 4.3: Comparison of Errors of Misclassification of ESD with ND Averaged over 8  

Samples for all Known Parameters with Simulation Size of 200 
  

E1E E2E  E3E Total E1N E2N   E3N Total 

31025.6   0.30625 0.29813 0.29438 0.89876 0.29313 0.30500 0.30250 0.90063 

21025.1   0.31188 0.29063 0.30500 0.90751 0.29875 0.30063 0.30313 0.90251 

0.025 0.31000 0.31000 0.30500 0.92500 0.29625 0.29688 0.29938 0.89251 

0.050 0.30188 0.29125 0.30813 0.90126 0.30188 0.30188 0.29438 0.89814 

0.085 0.30375 0.30438 0.29813 0.90626 0.30938 0.30313 0.30063 0.91314 

0.120 0.30188 0.29188 0.29688 0.89064 0.29750 0.29938 0.30563 0.90251 

0.155 0.30313 0.30500 0.29500 0.90313 0.29938 0.30438 0.30813 0.91189 

0.190 0.29875 0.30250 0.29688 0.89813 0.29938 0.28875 0.29313 0.88126 

0.225 0.30375 0.30313 0.30188 0.90876 0.30625 0.30938 0.30188 0.91751 

0.260 0.30063 0.29875 0.29375 0.89313 0.29813 0.30250 0.30125 0.90188 

0.295 0.30125 0.29875 0.30500 0.90500 0.29438 0.29375 0.29750 0.88563 

0.330 0.30125 0.29438 0.30438 0.90001 0.29813 0.29688 0.29813 0.89314 

0.365 0.30250 0.29813 0.29875 0.89938 0.29563 0.29625 0.29875 0.89063 

0.400 0.30188 0.28688 0.29438 0.88314 0.30250 0.30188 0.30250 0.90688 

Source: IDE, R-Version 4.4.1, R-studio  

Table 4.3 shows results of the simulation size of 200, which compares the performance of the 

Edgeworth Series Distribution (ESD) and Normal Distribution (ND) methods averaged over 8 

samples for estimating probabilities of misclassification across different populations and 

skewness levels. The probabilities of misclassification vary across populations and skewness 

levels, but their variations are relatively close between the two methods, indicating that both 

methods perform similarly. However, the ESD method tends to have slightly higher or equal 

probabilities of misclassification compared to the ND method, especially for Population 1 at 

skewness levels (6.25×10-3 – 0.05).  

The ESD and ND classification procedures have similar total probability of misclassification 

at all 4 values. The total probability of misclassification values shows that using a small 

sample of 8 to estimate 1 , 2 , and 3 , results is either underestimation or overestimation for 

each value of 4 . The skewness component ( 4 ) has minimal effect on the overall probability 

of misclassification, indicating that it is not affected by deviations from normality. Based on 

these values, the probabilities of misclassification across all populations can be considered 

relatively high, as they exceed 0.2 (20%) and are close to 0.3 (30%).  

 Comparison of Errors of Misclassification of ESD with ND Averaged over 12 , 16,20,24, and 

28 for all known Parameters with  Simulation Size of 200 for estimating probabilities  of 

misclassification and skewness level vary across population indicating that both methods 

perform similarly. 

Table 4.4: Summary of Decision for Testing Errors of Misclassification Values   

Averaged over 4 Samples with Computations: ESD vs. ND 
   Errors of 

Misclassification 

Ranks Z Decision 

S/N Population SKN ESD ND ESD ND 

1  

 

1 0.30625 0.29125 20.0 2.0  

 

 

 2 2 0.30875 0.29375 24.5 3.0 
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3  

 

 

 

 

1 

3 0.30375 0.30250 16.5 14.5  

 

 

 

1.68 

 

 

 

 

Do not 

Reject  

H0 

 

4 4 0.31500 0.28875 28.0 1.0 

5 5 0.30500 0.29750 18.0 7.5 

6 6 0.31250 0.30125 26.5 12.0 

7 7 0.29750 0.30000 7.5 9.5 

8 8 0.30250 0.30625 14.5 20.0 

9 9 0.31250 0.30875 26.5 24.5 

10 10 0.30000 0.30125 9.5 12.0 

11 11 0.30375 0.30625 16.5 20.0 

12 12 0.29625 0.29625 5.5 5.5 

13 13 0.30750 0.30750 22.5 22.5 

14 14 0.29500 0.30125 4.0 12.0 

15  

 

 

 

 

 

 

2 

1 0.29875 0.30000 11.5 16.0  

 

 

 

 

 

0.05 

 

 

 

 

 

 

Do not 

Reject  

H0 

 

16 2 0.30250 0.30375 20.0 22.5 

17 3 0.30375 0.30500 22.5 25.0 

18 4 0.29250 0.28875 5.0 3.0 

19 5 0.30000 0.29625 16.0 6.5 

20 6 0.29750 0.30375 8.5 22.5 

21 7 0.28750 0.29875 1.5 11.5 

22 8 0.29750 0.30000 8.5 16.0 

23 9 0.30375 0.30000 22.5 16.0 

24 10 0.28750 0.30000 1.5 16.0 

25 11 0.29875 0.29625 11.5 6.5 

26 12 0.31375 0.31375 27.5 27.5 

27 13 0.31250 0.29875 26.0 11.5 

28 14 0.30125 0.29125 19.0 4.0 

29  

 

 

 

 

 

 

3 

1 0.30250 0.29625 16.5 9.0  

 

 

 

 

 

0.85 

 

 

 

 

 

 

Do not 

Reject  

H0 

 

30 2 0.29000 0.30375 3.5 19.0 

31 3 0.30375 0.30125 19.0 13.5 

32 4 0.30125 0.30625 13.5 23.0 

33 5 0.31375 0.29000 27.5 3.5 

34 6 0.30750 0.30000 25.5 10.5 

35 7 0.30750 0.29375 25.5 5.5 

36 8 0.30125 0.29500 13.5 7.5 

37 9 0.30125 0.30375 13.5 19.0 

38 10 0.29500 0.30250 7.5 16.5 

39 11 0.30000 0.30625 10.5 23.0 

40 12 0.30625 0.31375 23.0 27.5 

41 13 0.28750 0.29375 2.0 5.5 

42 14 0.30500 0.28625 21.0 1.0 

43  

 

 

Total 

1 0.90750 0.88750 17.5 5.0  

 

 

 

 

1.40 

 

 

 

 

 

Do not 

Reject  

H0 

 

44 2 0.90125 0.90125 11.0 11.0 

45 3 0.91125 0.90875 22.0 20.0 

46 4 0.90875 0.88375 20.0 3.5 

47 5 0.91875 0.88375 27.0 3.5 

48 6 0.91750 0.90500 25.5 16.0 

49 7 0.89250 0.89250 6.5 6.5 

50 8 0.90125 0.90125 11.0 11.0 

51 9 0.91750 0.91250 25.5 23.0 

52 10 0.88250 0.90375 2.0 15.0 

53 11 0.90250 0.90875 14.0 20.0 

54 12 0.91625 0.92375 24.0 28.0 

55 13 0.90750 0.90000 17.5 8.0 

56 14 0.90125 0.87875 11.0 1.0 

      Source: IDE, R-Version 4.4.1, R-studio  
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Table 4.5: Summary of Decision for Testing Errors of Misclassification Values Averaged     

                    Over  8 Samples with Computations: ESD vs. ND 
   Errors of 

Misclassification 

Ranks Z Deci

sion 

S/N Population SKN ESD ND ESD ND 

1  

 

 

 

 

 

 

1 

1 0.30625 0.29313 24.5 1.0  

 

 

 

 

 

2.69 

 

 

 

 

 

 
Reject  

H0 

 

2 2 0.31188 0.29875 28.0 8.5 

3 3 0.31000 0.29625 27.0 4.0 

4 4 0.30188 0.30188 16.5 16.5 

5 5 0.30375 0.30938 22.5 26.0 

6 6 0.30188 0.29750 16.5 5.0 

7 7 0.30313 0.29938 21.0 10.5 

8 8 0.29875 0.29938 8.5 10.5 

9 9 0.30375 0.30625 22.5 24.5 

10 10 0.30063 0.29813 12.0 6.5 

11 11 0.30125 0.29438 13.5 2.0 

12 12 0.30125 0.29813 13.5 6.5 

13 13 0.30250 0.29563 19.5 3.0 

14 14 0.30188 0.30250 16.5 19.5 

15  

 

 

 

 

 

 

2 

1 0.29813 0.30500 11.5 25.5  

 

 

 

 

 

0.67 

 

 

 

 

 

 
Do 

not 

Reject  

H0 

 

16 2 0.29063 0.30063 3.0 16.0 

17 3 0.31000 0.29688 28.0 9.5 

18 4 0.29125 0.30188 4.0 17.5 

19 5 0.30438 0.30313 23.5 21.5 

20 6 0.29188 0.29938 5.0 15.0 

21 7 0.30500 0.30438 25.5 23.5 

22 8 0.30250 0.28875 19.5 2.0 

23 9 0.30313 0.30938 21.5 27.0 

24 10 0.29875 0.30250 13.5 19.5 

25 11 0.29875 0.29375 13.5 6.0 

26 12 0.29438 0.29688 7.0 9.5 

27 13 0.29813 0.29625 11.5 8.0 

28 14 0.28688 0.30188 1.0 17.5 

29  

 

 

 

 

 

 

3 

1 0.29438 0.30250 4.0 19.5  

 

 

 

 

 

0.44 

 

 

 

 

 

 
Do 

not 

Reject  

H0 

 

30 2 0.30500 0.30313 24.0 21.0 

31 3 0.30500 0.29938 24.0 14.0 

32 4 0.30813 0.29438 27.5 4.0 

33 5 0.29813 0.30063 10.5 15.0 

34 6 0.29688 0.30563 7.5 26.0 

35 7 0.29500 0.30813 6.0 27.5 

36 8 0.29688 0.29313 7.5 1.0 

37 9 0.30188 0.30188 17.5 17.5 

38 10 0.29375 0.30125 2.0 16.0 

39 11 0.30500 0.29750 24.0 9.0 

40 12 0.30438 0.29813 22.0 10.5 

41 13 0.29875 0.29875 12.5 12.5 

42 14 0.29438 0.30250 4.0 19.5 

43  

 

1 0.89876 0.90063 11.0 14.0  

 

 

 44 2 0.90751 0.90251 23.0 17.5 
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45  

Total 

3 0.92500 0.89251 28.0 6.0  

 

 

0.25 

 

 

 
Do 

not 

Reject  

H0 

 

46 4 0.90126 0.89814 15.0 10.0 

47 5 0.90626 0.91314 21.0 26.0 

48 6 0.89064 0.90251 5.0 17.5 

49 7 0.90313 0.91189 19.0 25.0 

50 8 0.89813 0.88126 9.0 1.0 

51 9 0.90876 0.91751 24.0 27.0 

52 10 0.89313 0.90188 7.0 16.0 

53 11 0.90500 0.88563 20.0 3.0 

54 12 0.90001 0.89314 13.0 8.0 

55 13 0.89938 0.89063 12.0 4.0 

56 14 0.88314 0.90688 2.0 22.0 

      Source: IDE, R-Version 4.4.1, R-studio  

Table 4.6: Summary of Multiple Metrics Statistics between LDA and QDA from ESD 

Averaged over 4 Samples with Simulation Size of 200 

Skew   LDA QDA 

  Pop I Pop II Pop III Pop I Pop II Pop III 
0.00625 

 
Statistics by 

Class 

Sensitivity 0.7600 0.540 0.3300 0.7500 0.495 0.4250 

Specificity 0.8075 0.735 0.7725 0.8175 0.765 0.7525 

Accuracy 0.5750 0.5841 

AUC-ROC 0.7709 0.7823 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.0125 

 

Statistics by 

Class 

Sensitivity 0.765 0.4850 0.3700 0.775 0.600 0.3600 

Specificity 0.815 0.7225 0.7725 0.815 0.695 0.8575 

Accuracy 0.5658 0.5625 

AUC-ROC 0.7641 0.7706 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 
0.0025 

 

Statistics by 

Class 

Sensitivity 0.7700 0.5200 0.3950 0.745 0.5250 0.425 

Specificity 0.8475 0.7375 0.7575 0.860 0.7325 0.755 

Accuracy 0.5521 0.5795 

AUC-ROC 0.7686 0.7801 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.05000 
Statistics by 

Class 

Sensitivity 0.8200 0.540 0.375 0.8200 0.555 0.4150 

Specificity 0.8475 0.745 0.775 0.8525 0.745 0.7975 

Accuracy 0.5579 0.5742 

AUC-ROC 0.7644 0.7735 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.08500 
Statistics by 

Class 

Sensitivity 0.8100 0.475 0.41 0.8000 0.4500 0.570 

Specificity 0.8325 0.745 0.77 0.8525 0.8125 0.745 

Accuracy 0.5513 0.5679 

AUC-ROC 0.7686 0.7800 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.120 

 

Statistics by 

Class 

Sensitivity 0.77 0.370 0.5150 0.755 0.530 0.4200 

Specificity 0.81 0.795 0.7225 0.825 0.715 0.8125 

Accuracy 0.5579 0.5671 

AUC-ROC 0.7662 0.7747 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 
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0.155 

 

Statistics by 

Class 

Sensitivity 0.8200 0.4600 0.42 0.8100 0.4450 0.5400 

Specificity 0.8275 0.7625 0.76 0.8425 0.8325 0.7225 

Accuracy 0.5492 0.5671 

AUC-ROC 0.7623 0.7714 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.190 

 

Statistics by 

Class 

Sensitivity 0.8400 0.56 0.3400 0.8250 0.470 0.5350 

Specificity 0.8425 0.73 0.7975 0.8525 0.835 0.7275 

Accuracy 0.5654 0.5829 

AUC-ROC 0.7641 0.7784 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.225 

 

Statistics by 

Class 

Sensitivity 0.7900 0.3250 0.555 0.7800 0.550 0.4600 

Specificity 0.8125 0.7875 0.735 0.8275 0.745 0.8225 

Accuracy 0.5625 0.5900 

AUC-ROC 0.7704 0.7823 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.260 

 

Statistics by 

Class 

Sensitivity 0.805 0.4650 0.3900 0.78 0.515 0.3800 

Specificity 0.800 0.7525 0.7775 0.81 0.725 0.8025 

Accuracy 0.5579 0.5796 

AUC-ROC 0.7643 0.7742 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.295 

 

Statistics by 

Class 

Sensitivity 0.8000 0.5050 0.3800 0.795 0.4750 0.4500 

Specificity 0.8325 0.7325 0.7775 0.830 0.7575 0.7725 

Accuracy 0.5504 0.5821 

AUC-ROC 0.7669 0.7796 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.330 

 

Statistics by 

Class 

Sensitivity 0.8050 0.42 0.43 0.79 0.62 0.3450 

Specificity 0.8075 0.78 0.74 0.81 0.69 0.8775 

Accuracy 0.5496 0.5725 

AUC-ROC 0.7585 0.7710 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.36500 
Statistics by 

Class 

Sensitivity 0.7950 0.3200 0.575 0.785 0.3350 0.555 

Specificity 0.8125 0.7825 0.750 0.810 0.7675 0.760 

Accuracy 0.5613 0.5771 

AUC-ROC 0.7672 0.7788 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.400 

 

Statistics by 

Class 

Sensitivity 0.7950 0.46 0.4350 0.7750 0.5000 0.4300 

Specificity 0.8175 0.77 0.7575 0.8125 0.7625 0.7775 

Accuracy 0.5488 0.5758 

AUC-ROC 0.7583 0.7723 

Source: IDE, R-Version 4.4.1, R-studio  

The result in Table 4.6 compares the performance multiple metrics statistics of Linear 

Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) averaged over 4 

samples with simulation size of 200 across various skewness levels. QDA tends to have higher 

accuracy values in all skewness levels than LDA except for skewness level 0.01250, whereas 

QDA tends to have higher AUC-ROC values than LDA across all the skewness levels. QDA's 

average accuracy (0.576) is higher than LDA's (0.558), whereas QDA's average AUC-ROC 

(0.776) is higher than LDA's (0.765). QDA tends to have higher sensitivity for Pop I and Pop 
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III, whereas QDA tends to have higher specificity for Pop I and Pop II. QDA tends to 

outperform LDA across various skewness levels, especially in terms of accuracy and AUC-

ROC. QDA's robustness to skewness makes it a better choice for classification tasks with 

skewed data. 

 

Fig. 4.1: Graph Displaying LDA and QDA Accuracy by Skewness Level Averaged over 

4    Samples with Simulation Size of 200 for all Known Parameters 

 

Figure 4.1 compares the accuracy of Linear Discriminant Analysis (LDA) and Quadratic 

Discriminant Analysis (QDA) across various skewness levels averaged over 4 samples with 

simulation size of 200 for all known parameters. QDA outperforms LDA, as QDA achieves 

higher accuracy than LDA across most skewness levels. Hence, QDA is more suitable for 

classification tasks with skewed data. 

Fig. 4.2: Graph Displaying LDA and QDA AUC-ROC by Skewness Level Averaged 

over 4    Samples with Simulation Size of 200 for all Known Parameters 

Figure 4.2 compares the Area under the Receiver Operating Characteristic Curve (AUC-ROC) 

of LDA and QDA across various skewness levels averaged over 4 samples with simulation size 

of 200 for all known parameters. QDA outperforms LDA, as QDA achieves higher AUC-ROC 

than LDA across most skewness levels. Hence, QDA is more suitable for classification tasks 

with skewed data. 
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Table 4.7: Summary of Multiple Metrics Statistics between LDA and QDA from ESD 

Averaged over 8 Samples with Simulation Size of 200 

Skew     LDA QDA 

  Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.00625 

 

Statistics by 

Class 

Sensitivity 0.7800 0.445 0.460 0.780 0.45 0.46 

Specificity 0.8025 0.775 0.765 0.815 0.78 0.75 

Accuracy 0.5681 0.5725 

AUC-ROC 0.7675 0.7768 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.01250 

 

Statistics by 

Class 

Sensitivity 0.7650 0.3250 0.4950 0.76 0.320

0 

0.6400 

Specificity 0.7925 0.7725 0.7275 0.81 0.872

5 

0.6775 

Accuracy 0.5548 0.5750 

AUC-ROC 0.7661 0.7768 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.00250 

 

Statistics by 

Class 

Sensitivity 0.775 0.4500 0.430 0.765

0 

0.420

0 

0.5100 

Specificity 0.785 0.7575 0.785 0.797

5 

0.792

5 

0.7575 

Accuracy 0.5590 0.5763 

AUC-ROC 0.7726 0.7829 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.05000 

Statistics by 

Class 

Sensitivity 0.760 0.56 0.3350 0.735 0.555 0.390 

Specificity 0.805 0.74 0.7825 0.820 0.735 0.785 

Accuracy 0.5558 0.5735 

AUC-ROC 0.7626 0.7717 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.08500 

Statistics by 

Class 

Sensitivity 0.7900 0.3250 0.555 0.780

0 

0.550 0.4600 

Specificity 0.8125 0.7875 0.735 0.827

5 

0.745 0.8225 

Accuracy 0.5675 0.5927 

AUC-ROC 0.7710 0.7852 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.12000 

 

Statistics by 

Class 

Sensitivity 0.805 0.4900 0.33 0.805 0.630

0 

0.3550 

Specificity 0.850 0.7125 0.75 0.850 0.702

5 

0.8425 

Accuracy 0.5556 0.5760 

AUC-ROC 0.7638 0.7754 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.15500 

 

Statistics by 

Class 

Sensitivity 0.770 0.425 0.4200 0.745 0.430

0 

0.4950 

Specificity 0.805 0.745 0.7575 0.815 0.787

5 

0.7325 

Accuracy 0.5540 0.5727 
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AUC-ROC 0.7619 0.7733 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.19000 

 

Statistics by 

Class 

Sensitivity 0.8000 0.5100 0.2950 0.790

0 

0.435 0.5250 

Specificity 0.8025 0.7275 0.7725 0.812

5 

0.830 0.7325 

Accuracy 0.5573 0.5785 

AUC-ROC 0.7642 0.7775 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.22500 

 

Statistics by 

Class 

Sensitivity 0.8050 0.45 0.4150 0.805

0 

0.390 0.5450 

Specificity 0.8225 0.76 0.7525 0.837

5 

0.815 0.7175 

Accuracy 0.5544 0.5710 

AUC-ROC 0.7638 0.7751 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.26000 

 

Statistics by 

Class 

Sensitivity 0.825 0.450 0.4000 0.820

0 

0.56 0.295 

Specificity 0.805 0.765 0.7675 0.802

5 

0.69 0.845 

Accuracy 0.5483 0.5652 

AUC-ROC 0.7623 0.7704 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.29500 

 

Statistics by 

Class 

Sensitivity 0.7950 0.4450 0.40 0.775

0 

0.465 0.465 

Specificity 0.8275 0.7525 0.74 0.822

5 

0.780 0.750 

Accuracy 0.5573 0.5750 

AUC-ROC 0.7656 0.7759 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.33000 

 

Statistics by 

Class 

Sensitivity 0.765 0.4750 0.445 0.765 0.475 0.4850 

Specificity 0.830 0.7625 0.750 0.835 0.775 0.7525 

Accuracy 0.5525 0.5713 

AUC-ROC 0.7656 0.7759 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.36500 

Statistics by 

Class 

Sensitivity 0.760 0.345 0.5500 0.755 0.550 0.455 

Specificity 0.825 0.770 0.7325 0.840 0.715 0.825 

Accuracy 0.5569 0.5825 

AUC-ROC 0.7659 0.7792 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.40000 

 

Statistics by 

Class 

Sensitivity 0.7850 0.420 0.38 0.795 0.340 0.5000 

Specificity 0.8075 0.725 0.76 0.800 0.795 0.7225 

Accuracy 0.5667 0.5860 

AUC-ROC 0.7715 0.7790 

Source: IDE, R-Version 4.4.1, R-studio  
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The result in Table 4.7 compares the performance multiple metrics statistics of Linear 

Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) averaged over 8 

samples with simulation size of 200 across various skewness levels. QDA tends to have higher 

accuracy and AUC-ROC values than LDA across all the skewness levels. QDA's average 

accuracy (0.576) is higher than LDA's (0.558), whereas QDA's average AUC-ROC (0.777) is 

higher than LDA's (0.766). QDA tends to have higher sensitivity for Pop I and Pop III, whereas 

QDA tends to have higher specificity for Pop I and Pop II. QDA tends to outperform LDA 

across various skewness levels, especially in terms of accuracy and AUC-ROC. QDA's 

robustness to skewness makes it a better choice for classification tasks with skewed data. 

 

Fig. 4.3: Graph Displaying LDA and QDA Accuracy by Skewness Level Averaged over 

8    Samples with Simulation Size of 200 for all Known Parameters 

 

 

Figure 4.3 compares the accuracy of Linear Discriminant Analysis (LDA) and Quadratic 

Discriminant Analysis (QDA) across various skewness levels averaged over 8 samples with 

simulation size of 200 for all known parameters. QDA outperforms LDA, as QDA achieves 

higher accuracy than LDA across all skewness levels. Hence, QDA is more suitable for 

classification tasks with skewed data. 

 

Fig. 4.4: Graph Displaying LDA and QDA AUC-ROC by Skewness Level Averaged 

over 8    Samples with Simulation Size of 200 for all Known Parameters 
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Figure 4.4 compares the Area under the Receiver Operating Characteristic Curve (AUC-ROC) 

of LDA and QDA across various skewness levels averaged over 8 samples with simulation size 

of 200 for all known parameters. QDA outperforms LDA, as QDA achieves higher AUC-ROC 

than LDA across all skewness levels. Hence, QDA is more suitable for classification tasks with 

skewed data. 

Table 4.8: Summary of Multiple Metrics Statistics between LDA and QDA from ESD 

Averaged over 12 Samples with Simulation Size of 200 

Skew   LDA QDA 

  Pop I Pop II Pop III Pop I Pop II Pop 

III 

 

0.00625 

 

Statistics 

by Class 

Sensitivity 0.83 0.360 0.4850 0.815 0.540 0.485 

Specificity 0.84 0.775 0.7225 0.845 0.767 0.807 

Accuracy 0.5640 0.5729 

AUC-ROC 0.7648 0.7740 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop 

III 

 

0.01250 

 

Statistics 

by Class 

Sensitivity 0.825 0.455 0.3650 0.825 0.360 0.465 

Specificity 0.825 0.730 0.7675 0.830 0.785 0.710 

Accuracy 0.5558 0.5740 

AUC-ROC 0.7687 0.7790 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop 

III 

 

0.00250 

 

Statistics 

by Class 

Sensitivity 0.820 0.4200 0.5200 0.8200 0.410

0 

0.60 

Specificity 0.825 0.7925 0.7625 0.8325 0.842

5 

0.74 

Accuracy 0.5561 0.5729 

AUC-ROC 0.7618 0.7724 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop 

III 

 

0.05000 

Statistics 

by Class 

Sensitivity 0.795 0.4100 0.4750 0.8000 0.470

0 

0.440 

Specificity 0.795 0.7625 0.7825 0.8025 0.737

5 

0.815 

Accuracy 0.5619 0.5850 

AUC-ROC 0.7678 0.7803 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop 

III 

 

0.08500 

Statistics 

by Class 

Sensitivity 0.7950 0.3200 0.575 0.785 0.335

0 

0.555 

Specificity 0.8125 0.7825 0.750 0.810 0.767

5 

0.760 

Accuracy 0.5522 0.5782 

AUC-ROC 0.7631 0.7759 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop 

III 
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0.12000 

 

Statistics 

by Class 

Sensitivity 0.790 0.4550 0.410 0.7900 0.520

0 

0.425

0 

Specificity 0.825 0.7475 0.755 0.8125 0.747

5 

0.807

5 

Accuracy 0.5506 0.5757 

AUC-ROC 0.7631 0.7759 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop 

III 

 

0.15500 

 

Statistics 

by Class 

Sensitivity 0.775 0.425 0.4750 0.7700 0.540 0.390

0 

Specificity 0.830 0.760 0.7475 0.8325 0.695 0.822

5 

Accuracy 0.5518 0.5647 

AUC-ROC 0.7623 0.7708 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop 

III 

 

0.19000 

 

Statistics 

by Class 

Sensitivity 0.820 0.320 0.5450 0.8150 0.455 0.455 

Specificity 0.805 0.805 0.7325 0.8225 0.740 0.800 

Accuracy 0.5532 0.5731 

AUC-ROC 0.7652 0.7757 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop 

III 

 

0.22500 

 

Statistics 

by Class 

Sensitivity 0.760 0.345 0.5500 0.755 0.550 0.455 

Specificity 0.825 0.770 0.7325 0.840 0.715 0.825 

Accuracy 0.5569 0.5796 

AUC-ROC 0.7672 0.7797 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop 

III 

 

0.26000 

 

Statistics 

by Class 

Sensitivity 0.7900 0.475 0.44 0.7850 0.470 0.52 

Specificity 0.8075 0.785 0.76 0.8125 0.815 0.76 

Accuracy 0.5606 0.5778 

AUC-ROC 0.7692 0.7766 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop 

III 

 

0.29500 

 

Statistics 

by Class 

Sensitivity 0.790 0.3700 0.495 0.78 0.440 0.480 

Specificity 0.795 0.7875 0.745 0.81 0.785 0.755 

Accuracy 0.5615 0.5694 

AUC-ROC 0.7665 0.7743 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop 

III 

 

0.33000 

 

Statistics 

by Class 

Sensitivity 0.790 0.4450 0.470 0.7750 0.445 0.500

0 

Specificity 0.805 0.7725 0.775 0.8175 0.790 0.752

5 

Accuracy 0.5554 0.5746 

AUC-ROC 0.7657 0.7758 

   LDA QDA 
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   Pop I Pop II Pop III Pop I Pop II Pop 

III 

 

0.36500 

Statistics 

by Class 

Sensitivity 0.8200 0.2650 0.5100 0.820 0.190 0.665

0 

Specificity 0.8125 0.7625 0.7225 0.795 0.885 0.657

5 

Accuracy 0.5610 0.5763 

AUC-ROC 0.7679 0.7777 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop 

III 

 

0.40000 

 

Statistics 

by Class 

Sensitivity 0.775 0.4300 0.44 0.7800 0.535 0.42 

Specificity 0.815 0.7575 0.75 0.8275 0.730 0.81 

Accuracy 0.5633 0.5788 

AUC-ROC 0.7676 0.7781 

Source: IDE, R-Version 4.4.1, R-studio  

The result in Table 4.8 compares the performance multiple metrics statistics of Linear 

Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) averaged over 12 

samples with simulation size of 200 across various skewness levels. QDA tends to have higher 

accuracy and AUC-ROC values than LDA across all the skewness levels. QDA's average 

accuracy (0.575) is higher than LDA's (0.559), whereas QDA's average AUC-ROC (0.776) is 

higher than LDA's (0.767). QDA tends to have higher sensitivity for Pop I and Pop III, whereas 

QDA tends to have higher specificity for Pop I and Pop II. QDA tends to outperform LDA 

across various skewness levels, especially in terms of accuracy and AUC-ROC. QDA's 

robustness to skewness makes it a better choice for classification tasks with skewed data. 

 
Fig. 4.5: Graph Displaying LDA and QDA Accuracy by Skewness Level Averaged 

over 12    Samples with Simulation Size of 200 for all Known Parameters 

 

Figure 4.5 compares the accuracy of Linear Discriminant Analysis (LDA) and Quadratic 

Discriminant Analysis (QDA) across various skewness levels averaged over 12 samples with 

simulation size of 200 for all known parameters. QDA outperforms LDA, as QDA achieves 

higher accuracy than LDA across all skewness levels. Hence, QDA is more suitable for 

classification tasks with skewed data. 
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Fig. 4.6: Graph Displaying LDA and QDA AUC-ROC by Skewness Level Averaged 

over 12 Samples with Simulation Size of 200 for all Known Parameters 

Figure 4.6 compares the Area under the Receiver Operating Characteristic Curve (AUC-ROC) 

of LDA and QDA across various skewness levels averaged over 12 samples with simulation 

size of 200 for all known parameters. QDA outperforms LDA, as QDA achieves higher AUC-

ROC than LDA across all skewness levels. Hence, QDA is more suitable for classification 

tasks with skewed data. 

Table 4.9: Summary of Multiple Metrics Statistics between LDA and QDA from ESD Averaged over 16 

Samples with Simulation Size of 200 

Skew    LDA QDA 

  Pop I Pop 

II 

Pop III Pop I Pop 

II 

Pop 

III 

         

 

0.00625 

 

Statistics by 

Class 

Sensitivity 0.800 0.470 0.4550 0.8000 0.460 0.4650 

Specificity 0.835 0.765 0.7625 0.8325 0.752 0.7775 

Accuracy 0.5606 0.5730 

AUC-ROC 0.7659 0.7760 

   LDA QDA 

   Pop I Pop 

II 

Pop III Pop I Pop 

II 

Pop 

III 

 

0.01250 

 

Statistics by 

Class 

Sensitivity 0.805 0.505 0.3250 0.8050 0.375 0.425 

Specificity 0.790 0.730 0.7975 0.8025 0.775 0.725 

Accuracy 0.5554 0.5752 

AUC-ROC 0.7670 0.7772 

   LDA QDA 

   Pop I Pop 

II 

Pop III Pop I Pop 

II 

Pop 

III 

 

0.00250 

 

Statistics by 

Class 

Sensitivity 0.795 0.440

0 

0.48 0.8000 0.505

0 

0.425 

Specificity 0.820 0.767

5 

0.77 0.8425 0.722

5 

0.800 

Accuracy 0.5625 0.5858 

AUC-ROC 0.7665 0.7795 

   LDA QDA 
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   Pop I Pop 

II 

Pop III Pop I Pop 

II 

Pop 

III 

 

0.05000 

Statistics by 

Class 

Sensitivity 0.8200 0.420 0.395 0.800 0.350

0 

0.6200 

Specificity 0.7875 0.765 0.765 0.805 0.872

5 

0.7075 

Accuracy 0.5524 0.5739 

AUC-ROC 0.7619 0.7740 

   LDA QDA 

   Pop I Pop 

II 

Pop III Pop I Pop 

II 

Pop 

III 

 

0.08500 

Statistics by 

Class 

Sensitivity 0.7950 0.490 0.3950 0.79 0.565 0.365 

Specificity 0.8175 0.755 0.7675 0.82 0.730 0.810 

Accuracy 0.5545 0.5743 

AUC-ROC 0.7646 0.7759 

   LDA QDA 

   Pop I Pop 

II 

Pop III Pop I Pop 

II 

Pop 

III 

 

0.12000 

 

Statistics by 

Class 

Sensitivity 0.795 0.400 0.50 0.80 0.485 0.43 

Specificity 0.840 0.777 0.73 0.83 0.737 0.79 

Accuracy 0.5502 0.5685 

AUC-ROC 0.7632 0.7731 

   LDA QDA 

   Pop I Pop 

II 

Pop III Pop I Pop 

II 

Pop 

III 

 

0.15500 

 

Statistics by 

Class 

Sensitivity 0.7600 0.445 0.4050 0.7550 0.485 0.410 

Specificity 0.8275 0.735 0.7425 0.8275 0.732 0.765 

Accuracy 0.5563 0.5795 

AUC-ROC 0.7669 0.7788 

   LDA QDA 

   Pop I Pop 

II 

Pop III Pop I Pop 

II 

Pop 

III 

 

0.19000 

 

Statistics by 

Class 

Sensitivity 0.860 0.505 0.3550 0.8600 0.440 0.45 

Specificity 0.825 0.747 0.7875 0.8375 0.787 0.75 

Accuracy 0.5655 0.5784 

AUC-ROC 0.7701 0.7777 

   LDA QDA 

   Pop I Pop 

II 

Pop III Pop I Pop 

II 

Pop 

III 

 

0.22500 

 

Statistics by 

Class 

Sensitivity 0.79 0.425 0.4050 0.79 0.515 0.3500 

Specificity 0.79 0.752 0.7675 0.80 0.715 0.8125 

Accuracy 0.5539 0.5716 

AUC-ROC 0.7620 0.7723 

   LDA QDA 

   Pop I Pop 

II 

Pop III Pop I Pop 

II 

Pop 

III 

 

0.26000 

 

Statistics by 

Class 

Sensitivity 0.8050 0.490 0.405 0.80 0.530 0.455 

Specificity 0.8375 0.747 0.765 0.84 0.767 0.785 

Accuracy 0.5602 0.5749 

AUC-ROC 0.7663 0.7753 

   LDA QDA 

   Pop I Pop 

II 

Pop III Pop I Pop 

II 

Pop 

III 
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0.29500 

 

Statistics by 

Class 

Sensitivity 0.8600 0.555 0.30 0.8500 0.385 0.4600 

Specificity 0.7975 0.730 0.83 0.8075 0.807 0.7325 

Accuracy 0.5601 0.5782 

AUC-ROC 0.7672 0.7776 

   LDA QDA 

   Pop I Pop 

II 

Pop III Pop I Pop 

II 

Pop 

III 

 

0.33000 

 

Statistics by 

Class 

Sensitivity 0.8650 0.540 0.3850 0.8550 0.48 0.4750 

Specificity 0.8275 0.755 0.8125 0.8325 0.80 0.7725 

Accuracy 0.5577 0.5798 

AUC-ROC 0.7670 0.7790 

   LDA QDA 

   Pop I Pop 

II 

Pop III Pop I Pop 

II 

Pop 

III 

 

0.36500 

Statistics by 

Class 

Sensitivity 0.7900 0.37 0.5100 0.7800 0.430 0.5050 

Specificity 0.8175 0.77 0.7475 0.8175 0.757 0.7825 

Accuracy 0.5592 0.5751 

AUC-ROC 0.7679 0.7788 

   LDA QDA 

   Pop I Pop 

II 

Pop III Pop I Pop 

II 

Pop 

III 

 

0.40000 

 

Statistics by 

Class 

Sensitivity 0.78 0.490 0.395 0.7900 0.490 0.4450 

Specificity 0.82 0.752 0.760 0.8175 0.772 0.7725 

Accuracy 0.5656 0.5768 

AUC-ROC 0.7696 0.7800 
Source IDE, R-Version 4.4.1, R-studio  

The result in Table 4.9 compares the performance multiple metrics statistics of Linear 

Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) averaged over 16 

samples with simulation size of 200 across various skewness levels. QDA tends to have higher 

accuracy and AUC-ROC values than LDA across all the skewness levels. QDA's average 

accuracy (0.576) is higher than LDA's (0.559), whereas QDA's average AUC-ROC (0.778) is 

higher than LDA's (0.766). QDA tends to have higher sensitivity for Pop I and Pop III, whereas 

QDA tends to have higher specificity for Pop I and Pop II. QDA tends to outperform LDA 

across various skewness levels, especially in terms of accuracy and AUC-ROC. QDA's 

robustness to skewness makes it a better choice for classification tasks with skewed data. 

Fig. 4.7: Graph Displaying LDA and QDA Accuracy by Skewness Level averaged over 

16    Samples with Simulation Size of 200 for all Known Parameters 
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Figure 4.7 compares the accuracy of Linear Discriminant Analysis (LDA) and Quadratic 

Discriminant Analysis (QDA) across various skewness levels averaged over 16 samples with 

simulation size of 200 for all known parameters. QDA outperforms LDA, as QDA achieves 

higher accuracy than LDA across all skewness levels. Hence, QDA is more suitable for 

classification tasks with skewed data. 

 

Fig. 4.8: Graph Displaying LDA and QDA AUC-ROC by Skewness Level Averaged 

over 16 Samples with Simulation Size of 200 for all Known Parameters 

 

Figure 4.8 compares the Area under the Receiver Operating Characteristic Curve (AUC-ROC) 

of LDA and QDA across various skewness levels averaged over 16 samples with simulation 

size of 200 for all known parameters. QDA outperforms LDA, as QDA achieves higher AUC-

ROC than LDA across all skewness levels. Hence, QDA is more suitable for classification 

tasks with skewed data. 

Table 4.10: Summary of Multiple Metrics Statistics between LDA and QDA from ESD 

Averaged over 20 Samples with Simulation Size of 200 
Skew   LDA QDA 

  Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.00625 

 

Statistics by 

Class 

Sensitivity 0.815 0.3650 0.4700 0.8050 0.5250 0.3750 

Specificity 0.795 0.7775 0.7525 0.8025 0.7275 0.8225 

Accuracy 0.5613 0.5749 

AUC-ROC 0.7665 0.7762 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.01250 

 

Statistics by 

Class 

Sensitivity 0.8300 0.435 0.4450 0.8050 0.5650 0.4350 

Specificity 0.8175 0.775 0.7625 0.8325 0.7475 0.8225 

Accuracy 0.5563 0.5755 

AUC-ROC 0.7659 0.7769 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 
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0.00250 

 

Statistics by 

Class 

Sensitivity 0.770 0.425 0.4200 0.745 0.4300 0.4950 

Specificity 0.805 0.745 0.7575 0.815 0.7875 0.7325 

Accuracy 0.5568 0.5793 

AUC-ROC 0.7645 0.7763 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.05000 

Statistics by 

Class 

Sensitivity 0.820 0.4200 0.4900 0.8300 0.2800 0.640 

Specificity 0.835 0.7625 0.7675 0.8425 0.8675 0.665 

Accuracy 0.5539 0.5743 

AUC-ROC 0.7632 0.7756 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.08500 

Statistics by 

Class 

Sensitivity 0.805 0.395 0.4550 0.810 0.430 0.48 

Specificity 0.825 0.725 0.7775 0.835 0.735 0.79 

Accuracy 0.5517 0.5694 

AUC-ROC 0.7645 0.7740 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.12000 

 

Statistics by 

Class 

Sensitivity 0.7850 0.420 0.38 0.795 0.340 0.5000 

Specificity 0.8075 0.725 0.76 0.800 0.795 0.7225 

Accuracy 0.5608 0.5828 

AUC-ROC 0.7683 0.7789 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.15500 

 

Statistics by 

Class 

Sensitivity 0.775 0.4850 0.415 0.7750 0.5550 0.370 

Specificity 0.810 0.7525 0.775 0.8075 0.7175 0.825 

Accuracy 0.5588 0.5694 

AUC-ROC 0.7658 0.7736 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.19000 

 

Statistics by 

Class 

Sensitivity 0.785 0.370 0.5200 0.785 0.3800 0.5450 

Specificity 0.820 0.765 0.7525 0.825 0.7825 0.7475 

Accuracy 0.5599 0.5775 

AUC-ROC 0.7663 0.7769 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.22500 

 

Statistics by 

Class 

Sensitivity 0.81 0.39 0.44 0.8100 0.495 0.36 

Specificity 0.82 0.76 0.74 0.8325 0.700 0.80 

Accuracy 0.5591 0.5773 

AUC-ROC 0.7670 0.7770 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.26000 

 

Statistics by 

Class 

Sensitivity 0.8050 0.4700 0.415 0.785 0.4400 0.470 

Specificity 0.8375 0.7475 0.760 0.840 0.7725 0.735 

Accuracy 0.5618 0.5834 

AUC-ROC 0.7691 0.7808 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.29500 

 

Statistics by 

Class 

Sensitivity 0.8100 0.455 0.49 0.8100 0.4050 0.4800 

Specificity 0.8075 0.780 0.79 0.7975 0.7875 0.7625 

Accuracy 0.5597 0.5745 

AUC-ROC 0.7670 0.7779 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.33000 

 

Statistics by 

Class 

Sensitivity 0.770 0.4650 0.4050 0.76 0.4650 0.5150 

Specificity 0.785 0.7475 0.7875 0.79 0.8025 0.7775 

Accuracy 0.5583 0.5718 
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AUC-ROC 0.7637 0.7741 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.36500 

Statistics by 

Class 

Sensitivity 0.800 0.4750 0.4450 0.78 0.4350 0.5150 

Specificity 0.835 0.7625 0.7625 0.84 0.7975 0.7275 

Accuracy 0.5566 0.5711 

AUC-ROC 0.7661 0.7761 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.40000 

 

Statistics by 

Class 

Sensitivity 0.81 0.385 0.445 0.8050 0.5600 0.385 

Specificity 0.83 0.750 0.740 0.8375 0.7075 0.830 

Accuracy 0.5537 0.5728 

AUC-ROC 0.7639 0.7735 

Source: IDE, R-Version 4.4.1, R-studio  

The result in Table 4.10 compares the performance multiple metrics statistics of Linear 

Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) averaged over 20 

samples with simulation size of 200 across various skewness levels. QDA tends to have higher 

accuracy and AUC-ROC values than LDA across all the skewness levels. QDA's average 

accuracy (0.576) is higher than LDA's (0.559), whereas QDA's average AUC-ROC (0.777) is 

higher than LDA's (0.766). QDA tends to have higher sensitivity for Pop I and Pop III, whereas 

QDA tends to have higher specificity for Pop I and Pop II. QDA tends to outperform LDA 

across various skewness levels, especially in terms of accuracy and AUC-ROC. QDA's 

robustness to skewness makes it a better choice for classification tasks with skewed data. 

 

 

Fig. 4.9: Graph Displaying LDA and QDA Accuracy by Skewness Level Averaged over 

20    Samples with Simulation Size of 200 for all Known Parameters 

Figure 4.9 compares the accuracy of Linear Discriminant Analysis (LDA) and Quadratic 

Discriminant Analysis (QDA) across various skewness levels averaged over 20 samples with 

simulation size of 200 for all known parameters. QDA outperforms LDA, as QDA achieves 

higher accuracy than LDA across all skewness levels. Hence, QDA is more suitable for 

classification tasks with skewed data. 

0.40.30.20.10.0

0.585

0.580

0.575

0.570

0.565

0.560

0.555

0.550

Skewness Level

A
cc

ur
ac

y

LDA

QDA

Scatterplot of LDA and QDA Accuracy vs Skewness Level



Journal of Economics and Allied Research Vol. 10, Issue 1, pp.282-321 (Mar. 2025) Print ISSN: 2536-7447 and E-ISSN: 3043-6591 

311 | P a g e  
 

 

 

Fig. 4.10: Graph Displaying LDA and QDA AUC-ROC by Skewness Level Averaged 

over 20 Samples with Simulation Size of 200 for all Known Parameters 

 

Figure 4.10 compares the Area Under the Receiver Operating Characteristic Curve (AUC-

ROC) of LDA and QDA across various skewness levels averaged over 20 samples with 

simulation size of 200 for all known parameters. QDA outperforms LDA, as QDA achieves 

higher AUC-ROC than LDA across all skewness levels. Hence, QDA is more suitable for 

classification tasks with skewed data. 

Table 4.11: Summary of Multiple Metrics Statistics between LDA and QDA from ESD 

Averaged over 24 Samples with Simulation Size of 200 

Skew     LDA  QDA 

  Pop I Pop II Pop III Pop I Pop II Pop 

III 

         

 

0.00625 

 

Statistics by 

Class 

Sensitivity 0.8100 0.475 0.41 0.8000 0.4500 0.570 

Specificity 0.8325 0.745 0.77 0.8525 0.8125 0.745 

Accuracy 0.5597 0.5738 

AUC-ROC 0.7668 0.7769 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop 

III 

 

0.01250 

 

Statistics by 

Class 

Sensitivity 0.805 0.4650 0.3900 0.78 0.515 0.380

0 

Specificity 0.800 0.7525 0.7775 0.81 0.725 0.802

5 

Accuracy 0.5594 0.5800 

AUC-ROC 0.7658 0.7771 

   LDA QDA 
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   Pop I Pop II Pop III Pop I Pop II Pop 

III 

 

0.00250 

 

Statistics by 

Class 

Sensitivity 0.795 0.5250 0.265 0.7900 0.5450 0.370

0 

Specificity 0.815 0.7025 0.775 0.8325 0.7375 0.782

5 

Accuracy 0.5533 0.5763 

AUC-ROC 0.7628 0.7756 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop 

III 

 

0.05000 

Statistics by 

Class 

Sensitivity 0.7800 0.45 0.3900 0.7700 0.5050 0.435 

Specificity 0.8075 0.75 0.7525 0.8225 0.7525 0.780 

Accuracy 0.5542 0.5698 

AUC-ROC 0.7650 0.7745 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop 

III 

 

0.08500 

Statistics by 

Class 

Sensitivity 0.85 0.4600 0.4600 0.8550 0.4250 0.57 

Specificity 0.85 0.7575 0.7775 0.8575 0.8275 0.74 

Accuracy 0.5580 0.5789 

AUC-ROC 0.7673 0.7777 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop 

III 

 

0.12000 

 

Statistics by 

Class 

Sensitivity 0.760 0.4150 0.41 0.7600 0.555 0.400 

Specificity 0.825 0.7375 0.73 0.8425 0.710 0.805 

Accuracy 0.5568 0.5697 

AUC-ROC 0.7649 0.7736 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop 

III 

 

0.15500 

 

Statistics by 

Class 

Sensitivity 0.7850 0.50 0.3350 0.7850 0.615 0.310

0 

Specificity 0.8125 0.74 0.7575 0.8125 0.705 0.837

5 

Accuracy 0.5637 0.5785 

AUC-ROC 0.7684 0.7779 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop 

III 

 

0.19000 

 

Statistics by 

Class 

Sensitivity 0.8050 0.4000 0.425 0.8000 0.575 0.385

0 

Specificity 0.8175 0.7525 0.745 0.8425 0.700 0.837

5 

Accuracy 0.5590 0.5769 

AUC-ROC 0.7661 0.7768 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop 

III 

 

0.22500 

 

Statistics by 

Class 

Sensitivity 0.7450 0.40 0.530 0.7350 0.4800 0.485 

Specificity 0.8225 0.78 0.735 0.8475 0.7375 0.765 

Accuracy 0.5612 0.5781 

AUC-ROC 0.7687 0.7796 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop 

III 

 Sensitivity 0.7700 0.39 0.5200 0.74 0.5600 0.375 
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0.26000 

 

Statistics by 

Class 

Specificity 0.8025 0.80 0.7375 0.80 0.6975 0.840 

Accuracy 0.5580 0.5712 

AUC-ROC 0.7647 0.7750 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop 

III 

 

0.29500 

 

Statistics by 

Class 

Sensitivity 0.8050 0.505 0.285 0.8000 0.455 0.485

0 

Specificity 0.7875 0.745 0.765 0.8125 0.830 0.727

5 

Accuracy 0.5583 0.5730 

AUC-ROC 0.7664 0.7767 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop 

III 

 

0.33000 

 

Statistics by 

Class 

Sensitivity 0.7850 0.51 0.370 0.7600 0.4750 0.470

0 

Specificity 0.8175 0.74 0.775 0.8425 0.7675 0.742

5 

Accuracy 0.5535 0.5733 

AUC-ROC 0.7644 0.7745 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop 

III 

 

0.36500 

Statistics by 

Class 

Sensitivity 0.7950 0.470 0.420 0.775 0.505 0.485

0 

Specificity 0.8425 0.745 0.755 0.865 0.765 0.752

5 

Accuracy 0.5520 0.5746 

AUC-ROC 0.7644 0.7763 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop 

III 

 

0.40000 

 

Statistics by 

Class 

Sensitivity 0.8500 0.5150 0.335 0.835 0.4300 0.510 

Specificity 0.8125 0.7375 0.800 0.835 0.8275 0.725 

Accuracy 0.5608 0.5737 

AUC-ROC 0.7673 0.7777 

Source: IDE, R-Version 4.4.1, R-studio  

The result in Table 4.11 compares the performance multiple metrics statistics of Linear 

Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) averaged over 24 

samples with simulation size of 200 across various skewness levels. QDA tends to have higher 

accuracy and AUC-ROC values than LDA across all the skewness levels. QDA's average 

accuracy (0.575) is higher than LDA's (0.559), whereas QDA's average AUC-ROC (0.777) is 

higher than LDA's (0.766). QDA tends to have higher sensitivity for Pop I and Pop III, whereas 

QDA tends to have higher specificity for Pop I and Pop II. QDA tends to outperform LDA 

across various skewness levels, especially in terms of accuracy and AUC-ROC. QDA's 

robustness to skewness makes it a better choice for classification tasks with skewed data. 
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Fig. 4.11: Graph Displaying LDA and QDA Accuracy by Skewness Level Averaged over 

24    Samples with Simulation Size of 200 for all Known Parameters 

Figure 4.11 compares the accuracy of Linear Discriminant Analysis (LDA) and Quadratic 

Discriminant Analysis (QDA) across various skewness levels averaged over 24 samples with 

simulation size of 200 for all known parameters. QDA outperforms LDA, as QDA achieves 

higher accuracy than LDA across all skewness levels. Hence, QDA is more suitable for 

classification tasks with skewed data. 

 

 

Fig. 4.12: Graph Displaying LDA and QDA AUC-ROC by Skewness Level Averaged 

over 24 Samples with Simulation Size of 200 for all Known Parameters 

Figure 4.12 compares the Area under the Receiver Operating Characteristic Curve (AUC-

ROC) of LDA and QDA across various skewness levels averaged over 24 samples with 

simulation size of 200 for all known parameters. QDA outperforms LDA, as QDA achieves 

higher AUC-ROC than LDA across all skewness levels. Hence, QDA is more suitable for 

classification tasks with skewed data. 
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Table 4.12: Summary of Multiple Metrics Statistics between LDA and QDA from 

Skew   LDA QDA 

  Pop I Pop II Pop III Pop I Pop II Pop III 

         

 

0.00625 

 

Statistics by 

Class 

Sensitivity 0.8050 0.4000 0.545 0.8000 0.3650 0.615 

Specificity 0.8025 0.8025 0.770 0.7975 0.8575 0.735 

Accuracy 0.5588 0.5733 

AUC-ROC 0.7668 0.7768 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.01250 

 

Statistics by 

Class 

Sensitivity 0.740 0.3150 0.5150 0.735 0.3700 0.58 

Specificity 0.795 0.7675 0.7225 0.800 0.8225 0.72 

Accuracy 0.5588 0.5805 

AUC-ROC 0.7653 0.7774 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.00250 

 

Statistics by 

Class 

Sensitivity 0.7750 0.300 0.4850 0.7800 0.265 0.54 

Specificity 0.8025 0.775 0.7025 0.8125 0.830 0.65 

Accuracy 0.5534 0.5743 

AUC-ROC 0.7631 0.7746 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.05000 

Statistics by 

Class 

Sensitivity 0.7900 0.4850 0.425 0.800 0.455 0.515 

Specificity 0.8325 0.7575 0.760 0.835 0.810 0.740 

Accuracy 0.5550 0.5740 

AUC-ROC 0.7661 0.7769 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.08500 

Statistics by 

Class 

Sensitivity 0.760 0.465 0.485 0.745 0.480 0.455 

Specificity 0.835 0.770 0.750 0.835 0.735 0.770 

Accuracy 0.5599 0.5743 

AUC-ROC 0.7667 0.7749 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.12000 

 

Statistics by 

Class 

Sensitivity 0.815 0.465 0.4350 0.7950 0.4700 0.475 

Specificity 0.845 0.750 0.7625 0.8425 0.7625 0.765 

Accuracy 0.5602 0.5779 

AUC-ROC 0.7672 0.7773 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.15500 

 

Statistics by 

Class 

Sensitivity 0.785 0.4300 0.4650 0.7700 0.5250 0.4300 

Specificity 0.805 0.7675 0.7675 0.8125 0.7175 0.8325 

Accuracy 0.5569 0.5773 

AUC-ROC 0.7662 0.7773 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.19000 

W2 

Statistics by 

Class 

Sensitivity 0.7550 0.405 0.4600 0.740 0.5200 0.405 

Specificity 0.7875 0.760 0.7625 0.795 0.7125 0.825 

Accuracy 0.5626 0.5765 

AUC-ROC 0.7688 0.7792 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.22500 

 

Statistics by 

Class 

Sensitivity 0.770 0.41 0.520 0.765 0.495 0.4750 

Specificity 0.805 0.79 0.755 0.815 0.750 0.8025 

Accuracy 0.5575 0.5736 

AUC-ROC 0.7651 0.7758 

   LDA QDA 
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   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.26000 

 

Statistics by 

Class 

Sensitivity 0.840 0.360 0.54 0.8350 0.3300 0.615 

Specificity 0.845 0.785 0.74 0.8425 0.8425 0.705 

Accuracy 0.5538 0.5701 

AUC-ROC 0.7646 0.7745 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.29500 

 

Statistics by 

Class 

Sensitivity 0.755 0.3600 0.530 0.7700 0.330 0.585 

Specificity 0.810 0.7875 0.725 0.8325 0.805 0.705 

Accuracy 0.5532 0.5748 

AUC-ROC 0.7643 0.7763 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.33000 

 

Statistics by 

Class 

Sensitivity 0.7850 0.4350 0.4150 0.785 0.41 0.4600 

Specificity 0.8175 0.7625 0.7375 0.815 0.78 0.7325 

Accuracy 0.5589 0.5749 

AUC-ROC 0.7671 0.7779 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.36500 

Statistics by 

Class 

Sensitivity 0.825 0.3250 0.5300 0.83 0.34 0.5450 

Specificity 0.800 0.7925 0.7475 0.81 0.82 0.7275 

Accuracy 0.5574 0.5743 

AUC-ROC 0.7677 0.7777 

   LDA QDA 

   Pop I Pop II Pop III Pop I Pop II Pop III 

 

0.40000 

 

Statistics by 

Class 

Sensitivity 0.7700 0.3950 0.515 0.7650 0.4350 0.5250 

Specificity 0.8225 0.7475 0.770 0.8325 0.7725 0.7575 

Accuracy 0.5599 0.5764 

AUC-ROC 0.7653 0.7758 

Source: IDE, R-Version 4.4.1, R-studio  

 The result in Table 4.12 compares the performance multiple metrics statistics of Linear Discriminant 

Analysis (LDA) and Quadratic Discriminant Analysis (QDA) averaged over 28 samples with simulation 

size of 200 across various skewness levels. QDA tends to have higher accuracy and AUC-ROC values 

than LDA across all the skewness levels. QDA's average accuracy (0.574) is higher than LDA's (0.559), 

whereas QDA's average AUC-ROC (0.777) is higher than LDA's (0.766). QDA tends to have higher 

sensitivity for Pop I and Pop III, whereas QDA tends to have higher specificity for Pop I and Pop II. 

QDA tends to outperform LDA across various skewness levels, especially in terms of accuracy and 

AUC-ROC. QDA's robustness to skewness makes it a better choice for classification tasks with skewed 

data. 

 
Fig. 4.13: Graph Displaying LDA and QDA Accuracy by Skewness Level Averaged over 

28    Samples with Simulation Size of 200 for all Known Parameters 
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Figure 4.13 compares the accuracy of Linear Discriminant Analysis (LDA) and Quadratic 

Discriminant Analysis (QDA) across various skewness levels averaged over 28 samples with 

simulation size of 200 for all known parameters. QDA outperforms LDA, as QDA achieves 

higher accuracy than LDA across all skewness levels. Hence, QDA is more suitable for 

classification tasks with skewed data. 

 

c  

Fig. 4.14: Graph Displaying LDA and QDA AUC-ROC by Skewness Level Averaged 

over 28 Samples with Simulation Size of 200 for all Known Parameters 

Figure 4.14 compares the Area under the Receiver Operating Characteristic Curve (AUC-

ROC) of LDA and QDA across various skewness levels averaged over 28 samples with 

simulation size of 200 for all known parameters. QDA outperforms LDA, as QDA achieves 

higher AUC-ROC than LDA across all skewness levels. Hence, QDA is more suitable for 

classification tasks with skewed data. 

 

Discussions of Findings 

The findings from objective one concludes that the results of the simulation size of 200, which 

compares the performance of the Edgeworth Series Distribution (ESD) and Normal 

Distribution (ND) methods averaged over small samples for estimating probabilities of 

misclassification across different populations and skewness levels vary across populations and 

skewness levels, but their variations are relatively close between the two methods, indicating 

that both methods perform similarly. The ESD and ND classification procedures have similar 

total probability of misclassification at all 4 values. The study also concludes that the 

optimum probability of misclassification values using small samples to estimate the means, 

results in either underestimation or overestimation for each value of the skewness, and the 

skewness component has minimal effect on the overall probability of misclassification, 

indicating that it is not affected by deviations from normality. The current study's findings align 

with Mardia's (2024) research on Fisher's pioneering work on discriminant analysis and its 

impact on Artificial Intelligence, which also revealed that the Edgeworth Series Distribution 

(ESD) and Normal Distribution (ND) methods exhibited similar performance. This 

concurrence suggests that the similarity in performance between ESD and ND methods is a 

consistent finding across different studies, further solidifying the understanding of their 

comparable capabilities in discriminant analysis. Again, the current study's findings are 
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consistent with the results of Gasana et al. (2024), who investigated moments of the likelihood-

based discriminant function and found that skewness has a minimal effect on the overall 

probability of misclassification. This agreement between the two studies suggests that the 

impact of skewness on misclassification probability is indeed negligible, providing further 

evidence for the robustness of discriminant analysis methods to deviations from normality. The 

concurrence of these findings reinforces the understanding of the relationship between 

skewness and misclassification probability. The result of this study disagrees with the findings 

of Nikita and Nikitas (2020) on sex estimation using various classification methods which 

reported that skewness had a significant impact on the overall probability of misclassification. 

The second objective of this study assessed the distributional performance of Edgeworth Series 

Distribution (ESD) and Normal Distribution (ND) models using simulated distributions. The 

Wilcoxon rank sum test revealed no significant differences in misclassification error values 

between ESD and ND techniques for populations I, II, III, and totals across various skewness 

levels and sample sizes (4, 8, 12, 16, 20, 24, 28), with one exception. Notably, for population 

I with a sample size of 8, a significant difference emerged, with ND outperforming ESD. This 

exception notwithstanding, the findings suggest that ESD and ND models exhibit equivalent 

relative efficiency for populations I, II, III, and totals, implying comparable performance in 

terms of misclassification errors. The present study's results corroborate the findings of Mardia 

(2024), who examined Fisher's seminal work on discriminant analysis and its influence on 

Artificial Intelligence. Mardia's study demonstrated that the Edgeworth Series Distribution 

(ESD) and Normal Distribution (ND) methods exhibited comparable performance, a 

conclusion that aligns with the current study's results. This concurrence lends further support 

to the notion that ESD and ND methods possess similar capabilities in discriminant analysis, 

reinforcing the validity of this finding across multiple investigations. On the other hand, the 

present study's results diverge from the findings of Kanuti and Ngaruye (2024), who 

investigated asymptotic results for expected probability of misclassifications in linear 

discriminant analysis with repeated measurements. Kanuti and Ngaruye's study revealed a 

significant difference in performance between the Edgeworth Series Distribution (ESD) and 

Normal Distribution (ND) methods, whereas the current study found no significant difference. 

This discrepancy highlights a potential inconsistency in the literature, suggesting that the 

relationship between ESD and ND methods may be more complex than previously thought. 

Further research is warranted to reconcile these conflicting findings and elucidate the 

circumstances under which ESD and ND methods exhibit divergent performance. 

The third objectives as revealed from the  study compared the performance of Linear 

Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) in classifying 

Edgeworth series distribution data averaged over different sample sizes for three distinct 

populations. The findings of the study revealed that QDA tends to have higher accuracy and 

AUC-ROC values than LDA across all the skewness levels. QDA's average accuracy and 

average AUC-ROC are higher than that of LDAs. QDA tends to have higher sensitivity for 

Pop. I and Pop III, whereas QDA tends to have higher specificity for Pop I and Pop II for all 

the different sample sizes for three distinct populations. QDA tends to outperform LDA across 

various skewness levels, especially in terms of accuracy and AUC-ROC. QDA's robustness to 

skewness makes it a better choice for classification tasks with skewed data. The findings of 

this study agreed with that of Kouamo et al. (2020) who found that QDA outperformed LDA 

in classification tasks with skewed data, and that of Li et al. (2020) who demonstrated QDA's 

robustness to skewness in medical diagnosis data and Zhang et al. (2022) demonstrated QDA's 

robustness to skewness and outliers in classification tasks. On the hand, Wang et al. (2020) 

found LDA performed better in high-dimensional data with low skewness, contrasting with the 

current study's findings. 
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5. CONCLUSION  

The study was on objective appraisal of Edgeworth series distribution (ESD) and Normal 

Distribution (ND) for three populations. The optimum probabilities of misclassification for the 

Edgeworh Series Distribution (ESD) were computed with 01  , 12  , 13  and 1  with 

4 being the skewness factor within the interval (0.00625, 0.4), being in 14 intervals as 

31025.6  , 21025.1  , 0.025, 0.05, 0.085, 0.12, 0.155, 0.19, 0.225, 0.26, 0.295, 0.33, 0.365 

and 0.4. The apparent probabilities of misclassification for the (ESD) and Normal Distribution 

(ND) were also examined when the means (
1 ,

2  and 3 ) are known and when the parameters 

are estimated from the samples. Three independent samples of simulation size of 200 each were 

configured at each value of the skewness factor ( 4 ) from three populations ( 21,
 
and 3 ) 

whose distributions are of ESD with the respective parameters: ( 01  , 11  ), ( 12  , 

12  ) and  ( 13  , 13  ). Employing the ESD and ND classification rules, the 

proportion misclassified in 21, and 3 were obtained and repeated for small samples (n = 

4, 8, 12, 16, 20, 24, 28). The random numbers were generated using RStudio program and 

simulation results were obtained.  The results of the simulation size of 200, which compares 

the performance of the Edgeworth Series Distribution (ESD) and Normal Distribution (ND) 

methods averaged over, 4, 8, 12, 16, 20, 24 ad 28 samples for estimating probabilities of 

misclassification across different populations and skewness levels reveal that the probabilities 

of misclassification vary across populations and skewness levels, but their variations are 

relatively close between the two methods, indicating that both methods perform similarly. The 

ESD and ND classification procedures have similar total probability of misclassification at all 

4 values. The total probability of misclassification values shows that using a small sample to 

estimate 
1 ,

2 , and 3 , results in either underestimation or overestimation for each value of 

.4  The skewness component ( 4 ) has minimal effect on the overall probability of 

misclassification, indicating that it is not affected by deviations from normality. The Wilcoxon 

rank sum test revealed no significant differences in misclassification error values between ESD 

and ND techniques for populations I, II, III, and totals across various skewness levels and 

sample sizes (4, 8, 12, 16, 20, 24, 28), with one exception. Notably, for population I with a 

sample size of 8, a significant difference emerged, with ND outperforming ESD. This 

exception notwithstanding, the findings suggest that ESD and ND models exhibit equivalent 

relative efficiency for populations I, II, III, and totals, implying comparable performance in 

terms of misclassification errors.  The result of the performance of LDA and QDA in 

classifying Edgeworth series distribution data averaged over different sample sizes for three 

distinct populations shows that QDA tends to have higher accuracy and AUC-ROC values than 

LDA across all the skewness levels. QDA's average accuracy and average AUC-ROC are 

higher than that of LDAs. QDA tends to have higher sensitivity for Pop. I and Pop III, whereas 

QDA tends to have higher specificity for Pop I and Pop II for all the different sample sizes for 

three distinct populations. QDA tends to outperform LDA across various skewness levels, 

especially in terms of accuracy and AUC-ROC. QDA's robustness to skewness makes it a better 

choice for classification tasks with skewed data. 
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5.2 RECOMMENDATIONS FOR FURTHER STUDIES 

Having discussed our  findings  on Edgeworth Series Distribution and Normal Distribution 

for three populations, we now recommend as follows; 

1. Further studies should look at separate analyses for each population to identify unique 

characteristics and improve classification performance within each group. 

2. The study concluded  that the probabilities of misclassification across all populations 

are relatively high. Therefore , we recommend that further research should replicate this 

study to improve both ESD and ND on order to reduce the misclassification rates 

3. Another research should develop and evaluate ensemble  methods combining LDA and 

QDA for improved classification accuracy. 

4. More should be done to investigate the performance of other classification algorithms 

(e.g Support Vector Machine (SVM), Random Forest ) compared to LDA and QDA in 

Edgeworth Series  distribution data. 

5. Develop a generalized model for estimating probabilities of misclassification via 

Edgeworth series distribution, incorporating flexible distribution assumptions, robust 

estimation methods and model selection criteria.  
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